当前位置: 首页 > 团队队伍 > 正文

教师简介:张娟

发布时间:2018-10-02   阅读:

基本信息


姓名:张娟

职称:教授

电子信箱:zhangjuan@xtu.edu.cn

办公室:数学楼 B-205


个人简介


教授,博士生导师,304am永利集团副经理,智能计算与信息处理教育部重点实验室常务副主任。湖南省湖湘青年英才,湖南省青年骨干教师培养对象中国高等教育学会教育数学专业委员会第 5 届副秘书长、常务理事湖南省运筹学会第3届常务理事。曾多次赴新加坡国立大学、澳门大学访问曾获宝钢优秀员工特等奖全国仅51)。


主要从事数值代数、控制理论、优化算法等方面研究。近五年在计算数学、控制领域权威期刊SIAM J. Numer. Anal.、SIAM J. Sci. Comput.AutomaticaJ. Comput. Phys.、J. Sci. Comput.、CSIAM Tran. Appl. Math.发表和接收发SCI论文20余篇。


主持国家级和省部级以上科研项目10余项,含2国自科项目、1项博士后科学基金面上项目一等资助作为子课题负责人承担国家重点研发计划、军科委GF项目、工业软件内核研发及应用验证产业基础共性技术中心项目、xxx外协项目主持中国高等教育学会研究规划课题重点项目、省级教改重点项目等教改项目。


《数学分析》国家一流本科线下课程核心成员,304am永利集团高等代数课程中心负责人。担任数学与应用数学系主任期间,数学与应用数学专业入选国家一流本科专业荣获湖南省教学成果奖二等奖、304am永利集团教学成果奖一等奖


指导博士研究生7人,硕士研究生25人。指导的研究生入选中国科协青年托举工程博士生计划,获博士后特别资助湖南省优秀硕士论文304am永利集团董事长奖特等奖、博士生国家奖学金、线性解法器算法与性能优化竞赛三等奖等,在计算数学、控制领域权威期刊SIAM J. Sci. Comput.、SIAM J. Numer. Anal.、Automatica发表学术论文多篇


学习工作经历



教育经历:
2009.09-2013.06   304am永利集团数学院   应用数学       博 士

2006.09-2009.06   304am永利集团数学院  运筹学与控制论   硕 士

2002.09-2006.06   304am永利集团数学院  信息与计算科学   本 科

职称经历:
2020.12-至今  304am永利集团      教 授

2015.12-2020.12   304am永利集团     副教授

2013.07-2015.12   304am永利集团     实验师



工作经历:
2024.08-2024.08   新加坡国立大学数学系          访问学者

2023.08-2023.08   新加坡国立大学数学系          访问学者

2023.01-2023.01   新加坡国立大学数学系          访问学者

2021.07-2021.07   澳门大学数学系              访问学者

2017.12-2018.12   新加坡国立大学数学系          访问学者

2015.08-2015.09   澳门大学数学系              访问学者

2014.12-2017.11   国防科学技术大学理学院         博士后


主讲课程


高等代数、矩阵论基础、线性代数、高等数学


高等代数课程中心负责人,主持高等代数在线精品课程:高等代数—智慧树网 (zhihuishu.com),矩阵论基础在线精品课程


研究方向


矩阵计算、线性系统求解、矩阵优化、AI for Science


招生:博士后、博士研究生(1-2名)、硕士研究生(2-4名)


科研项目


主持科研项目:

2023-2026 国家重点研发计划子课题负责人

2023-2025 工业软件内核研发及应用验证产业基础共性技术中心项目子课题负责人

2023-2025 军科委GF项目子课题负责人

2024-2026   xxx 外协项目子课题负责人

2021-2024  湖湘青年科技创新项目

2018-2021  国家自然科学基金面上项目

2015-2017  国家自然科学基金青年项目

2021-2023  湖南省教育厅重点项目

2018-2020  湖南省教育厅优秀青年项目

2017-2019  湖南省自然科学基金青年项目

2015-2017  博士后科学基金面上资助一等资助项目


主持教改项目:

2024-2026   中国高等教育学会研究规划课题重点项目

2022-2024  湖南省教改项目重点项目

2019-2022   湖南省教改项目


获奖情况



2024年,指导博士生入选中国科协青年托举工程博士生计划

2024年,指导博士生获国家奖学金

2024年,304am永利集团优秀班主任

2023年,指导博士生、硕士生获304am永利集团董事长奖优秀奖

2022年,湖南省教学成果奖二等奖

2022年,304am永利集团教学成果奖一等奖

2022年指导硕士生获湖南省优秀硕士论文

2022年,304am永利集团“芙蓉百岗明星”

2022年,指导硕士生获国家奖学金

2021年,湖南省湖湘青年英才

2021年,304am永利集团优秀党员

2021年,指导博士生获国家奖学金

2021年,指导研究生获304am永利集团优秀硕士论文奖

2020年,湖南省青年骨干教师培养对象

2020年,指导研究生获304am永利集团第二十五届研究生董事长奖特等奖

2020年,304am永利集团优秀女教职工

2020年,304am永利集团优秀班主任

2015年,首届全国高校数学微课程教学设计竞赛华中赛区二等奖

2015年,304am永利集团青年教师教学比赛三等奖

2015年,304am永利集团优秀研究生班主任

2011年,宝钢优秀员工特等奖    

2011年,湖南省优秀硕士论文奖




部分论文


[1].K. Jiang, X. Li, Y. Ma, Juan Zhang, P. Zhang, Q. Zhou, Irrational-window-filter projection method and application to quasiperiodic Schrödinger eigenproblems, SIAM Journal on Numerical Analysisaccepted, https://arxiv.org/abs/2404.04507, 2025 (SCI).

[2].S. Li, Juan Zhang, A general alternating-direction implicit Newton method for solving complex continuous-time algebraic Riccati matrix equation, Applied Numerical Mathematics, 207, 642-656, 2025 (SCI).

[3].Juan Zhang, S. Li, K. Jiang, Two effificient block preconditioners for the mass-conserved Ohta-Kawasaki equation, Advances in Applied Mathematics and Mechanics, online, https://arxiv.org/abs/1910.09297, 2025 (SCI).

[4].Juan Zhang, W. Xun, Low-rank alternating direction doubling algorithm for solving large-scale continuous time algebraic Riccati equations, International Journal of Control, Automation and Systems, accepted, http://arxiv.org/abs/2404.12155, 2025 (SCI).

[5].J. Ge, Juan ZhangThree-precision iterative refinement with parameter regularization and prediction for solving large sparse linear systems, https://arxiv.org/abs/2501.04229, 2025.

[6].S. Shi, Juan ZhangComments and extensions on "State-equivalent form and minimum-order compensator design for rectangular descriptor systems", http://arxiv.org/abs/2501.13445, 2025.

[7]. K. Jiang, S. Li, Juan Zhang, High-accuracy numerical methods and convergence analysis for Schödinger equation with incommensurate potentials, Journal of Scientific Computing, 101(1), 18, 2024 (SCI).

[8]. Juan Zhang, W. Zou, C. Sui, BDF method and random forest method to solve  continuous-time differential Riccati equations, Asian Journal of Control, online, 2024 (SCI).

[9]. Juan Zhang, X. Liang, Further results of M-eigenvalue localization theorem for fourth-order partially symmetric tensors and their applications, Journal of Applied Analysis and Computation, 14, 3134-3161, 2024 (SCI).

[10].Juan Zhang, W. Xun, Low-rank generalized alternating direction implicit iteration method for solving matrix equations, Computational and Applied Mathematics, online, 2024 (SCI).

[11].K. Deng, Y. Wen, K. Li, Juan Zhang, Hybrid model of tensor sparse representation and total variation regularization for image denoising, Signal Processing 217, 109352, 2024 (SCI).

[12].K. Jiang, M. Li, Juan Zhang, L. Zhang, Projection method for quasiperiodic elliptic equations and application to quasiperiodic homogenization, http://arxiv.org/abs/2404.06841, 2024.

[13].W. Zou, Juan Zhang, X. Jie, K. Jiang, Quasiperiodic [110] Symmetric tilt FCC grain boundaries, https://arxiv.org/abs/2406.03023, 2024.

[14].K. Jiang, M. Li, Juan Zhang, L. Zhang, Convergence analysis of PM-BDF2 method for quasiperiodic parabolic equations, http://arxiv.org/abs/2412.19175, 2024.

[15].Juan Zhang, W. Zhao, Existence of solutions for the continuous algebraic Riccati equation via polynomial optimization, http://arxiv.org/abs/2408.13780, 2024.

[16].Juan Zhang, J. Luo, Convergent analysis of algebraic multigrid method with data-driven parameter learning for non-selfadjoint elliptic problems, http://arxiv.org/abs/2410.23681, 2024.

[17].Juan Zhang, Y. Luo, A preconditioned iteration method for solving saddle point problems, http://arxiv.org/abs/2404.06061, 2024.

[18].Juan Zhang and X. Luo, Optimization methods for solving matrix equations, http://arxiv.org/abs/2404.06030, 2024.

[19].Juan Zhang, Y. Luo, Preprocessed GMRES for fast solution of linear equations, http://arxiv.org/abs/2404.06018, 2024.

[20].K. Jiang, Juan Zhang, and Q. Zhou, Multitask kernel-learning parameter prediction method for solving time-dependent linear systems, CSIAM Transactions on Applied Mathematics, 4(4), 672-695, 2023 (SCI).

[21].Juan Zhang, and X. Chen, Z-eigenvalue localization sets for tensors and the applications in rank-one approximation and quantum entanglement, Acta Applicandae Mathematicae, 186, 10, 2023 (SCI).

[22].K. Jiang, X. Su, Juan Zhang, A general alternating-direction implicit framework with Gaussian process regression parameter prediction for large sparse linear systems, SIAM Journal on Scientific Computing, 44 (4), A1960-A1988, 2022 (SCI).

[23].Juan Zhang J. Liu, F. Luo, A class of fixed point iteration for the coupled algebraic Riccati equation, Journal of Applied Mathematics and Computing, 68,4119-4133, 2022 (SCI).

[24].Juan Zhang and S. Li, On the Hermitian positive definite solution and Newton's method for a nonlinear matrix equation, Linear and Multilinear Algebra, 69(11), 2093-2114, 2021 (SCI).

[25].Juan Zhang and H. Kang, The generalized modified Hermitian and skew-Hermitian splitting method for the generalized Lyapunov equation,  International Journal of Control,  Automation and Systems, 19, 339-349, 2021 (SCI).

[26].Juan Zhang and S. Li, The structure-preserving doubling algorithm and convergence analysis for a nonlinear matrix equation, Automatica, 113, 108822, 2020 (SCI).

[27].J. Liu, Juan Zhang and Q. Li, Upper and lower eigenvalue summation bounds of the Lyapunov matrix differential equation and the application in a class time-varying nonlinear system, International Journal of Control, 93(5), 1115-1126, 2020 (SCI).

[28].Juan Zhang, H. Kang and F. Tan, Two-parameters numerical methods of the non-symmetric algebraic Riccati equation, Journal of Computational and Applied Mathematics, 378, 112933, 2020 (SCI).

[29].Z. Chen, Juan Zhang, K. Ho, H. Yang, Multidimensional phase recovery and interpolative decomposition butterfly factorization, Journal of Computational Physics, 412, 109427, 2020 (SCI).

[30].J. Liu, Juan Zhang and F. Luo, Newton's method for the positive solution of the coupled algebraic Riccati equation applied to automatic control, Computational and Applied Mathematics, 39: 113, 2020 (SCI).

[31].Juan Zhang and S. Li, The structure-preserving doubling numerical algorithm of the continuous coupled algebraic Riccati equation, International Journal of Control, Automation and Systems, 18(7), 1641-1650, 2020 (SCI).

[32].Juan Zhang and F. Tan, Numerical methods for the minimal non-negative solution of the non-symmetric coupled algebraic Riccati equation, Asian Journal of Control, 23, 374-386, 2019(SCI).

[33].Juan Zhang and J. Liu, The matrix bounds and fixed-point iteration for the solution of the discrete algebraic Riccati equation, IMA Journal of Mathematical Control and Information, 36, 681-699, 2019 (SCI).

[34].J. Liu, Juan Zhang, L. Zhou and G.Tu,The Nekrasov diagonally dominant degree on the Schur complement of Nekrasov matrices and its applications, Applied Mathematics and Computation, 320, 251-263, 2018 (SCI).

[35].Juan Zhang, J. Liu and H. Huang, Lower eigenvalue bounds on summation for the solution of the Lyapunov matrix differential equation, Asian Journal of Control, 19(1), 382-390, 2017 (SCI).

[36].Juan Zhang, J. Liu and Y. Zha, The improved eigenvalue bounds for the solution of the discrete algebraic Riccati equation, IMA Journal of Mathematical Control and Information,   34(3), 851-870, 2017 (SCI).

[37].Juan Zhang, J. Liu and Q. Li, Lower bounds on eigenvalue summation for the solution of the Lyapunov matrix differential equation, IMA Journal of Mathematical Control and Information, 34(3), 987-998, 2017 (SCI).

[38].G. Li, J. Liu and Juan Zhang, The disc theorem for the Schur complement of two class submatrices with r-diagonally dominant properties, Numerical Mathematics: Theory, Methods and Applications, 10(1), 84-97, 2017 (SCI).

[39].J. Liu, L. Wang and Juan Zhang, New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation, International Journal of Control, 90(11), 2326-2337, 2017 (SCI).

[40].J. Liu, L. Wang and Juan Zhang, The solution bounds and fixed point iterative algorithm for the discrete coupled algebraic Riccati equation applied to automatic control, IMA Journal of Mathematical Control and Information, 34(1), 1135-1156, 2017 (SCI).

[41].J. Liu, Y. Wang and Juan Zhang, New upper matrix bounds with power form for the solution of the continuous coupled algebraic Riccati matrix equation, Asian Journal of Control, 19(2), 730-747, 2017 (SCI).

[42].J. Kai, Juan Zhang and Q. Liang, Self-assembly of asymmetrically interacting ABC star triblock copolymer melts, The Journal of Physical Chemistry B, 43(19), 14551-14562, 2015 (SCI).

[43].J. Liu and Juan Zhang, New upper and lower eigenvalue bounds for the solution of the continuous algebraic Riccati equation, Asian Journal of Control, 16(1), 284-291, 2014 (SCI).

[44].Juan Zhang and J. Liu, The improved upper solution bounds of the continuous coupled algebraic Riccati matrix equation, International Journal of Control, Automation, and Systems, 11(4), 852-858, 2013 (SCI).

[45].Juan Zhang and J. Liu, Lower solution bounds of the continuous coupled algebraic Riccati matrix equation, International Journal of Control, Automation, and Systems, 10(6), 1273-1278, 2012 (SCI).

[46].Juan Zhang and J. Liu, New matrix bounds, an existence uniqueness and a fixed-point iterative algorithm for the solution of the unified coupled algebraic Riccati equation, International Journal of Computer Mathematics, 89, 527-542, 2012 (SCI).

[47].J. Liu, Juan Zhang and Yu Liu, The Schur complement of strictly doubly diagonally dominant matrices and its application, Linear Algebra and its Applications, 437(1), 168-183, 2012 (SCI).

[48].J. Liu and Juan Zhang, New upper matrix bounds of the solution for perturbed continuous coupled algebraic Riccati matrix equation, International Journal of Control, Automation, and Systems, 10(6), 1254-1259, 2012 (SCI).

[49].J. Liu and Juan Zhang, Upper solution bounds of the continuous coupled algebraic Riccati matrix equation, International Journal of Control, 84(4), 726-736, 2011 (SCI).

[50].J. Liu and Juan Zhang, The existence uniqueness and the fixed iterative algorithm of the solution for the discrete coupled algebraic Riccati equation, International Journal of Control, 84(8), 1430-1441, 2011 (SCI).

[51].J. Liu and Juan Zhang, The open question of the relation between square matrix's eigenvalues and its similarity matrix’s singular values in linear discrete system, International Journal of Control, Automation, and Systems, 9(6), 1235-1241, 2011 (SCI).

[52].J. Liu, Juan Zhang and Y. Liu, New solution bounds for the continuous algebraic Riccati equation, Journal of the Franklin Institute, 348, 2128-2141, 2011 (SCI).

[53].J. Liu and Juan Zhang, Bounds for the eigenvalues of the continuous algebraic Riccati equation, International Journal of Systems Science, 42(10), 1747-1753, 2011 (SCI).

[54].J. Liu, Z. Huang and Juan Zhang, The dominant degree and disc theorem for the Schur complement of matrix, Applied Mathematics and Computation, 215, 4055-4066, 2010 (SCI).